展會信息港展會大全

為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?
來源:互聯(lián)網(wǎng)   發(fā)布日期:2024-10-09 18:47:42   瀏覽:3639次  

導(dǎo)讀:劃重點 012024年諾貝爾物理學(xué)獎頒給了人工神經(jīng)網(wǎng)絡(luò)和機器學(xué)習(xí),以表彰其基礎(chǔ)發(fā)現(xiàn)和發(fā)明。 02人工智能模型在醫(yī)療診斷、財務(wù)決策、求職招聘等領(lǐng)域發(fā)揮著重要作用,但解釋其決策仍是一個挑戰(zhàn)。 03哈娜喬克勒教授研發(fā)了名為ReX的工具,可以解釋圖像標(biāo)注人工智能...

劃重點

012024年諾貝爾物理學(xué)獎頒給了人工神經(jīng)網(wǎng)絡(luò)和機器學(xué)習(xí),以表彰其基礎(chǔ)發(fā)現(xiàn)和發(fā)明。

02人工智能模型在醫(yī)療診斷、財務(wù)決策、求職招聘等領(lǐng)域發(fā)揮著重要作用,但解釋其決策仍是一個挑戰(zhàn)。

03哈娜喬克勒教授研發(fā)了名為ReX的工具,可以解釋圖像標(biāo)注人工智能模型(稱為圖像分類器)的決策過程。

04實際因果關(guān)系是一種適用于任何因果系統(tǒng)的通用哲學(xué)框架,ReX的工作無需了解人工智能系統(tǒng)的內(nèi)部運作。

05未來,喬克勒和她的團隊將繼續(xù)將ReX技術(shù)應(yīng)用于大型語言模型,如ChatGPT。

以上內(nèi)容由騰訊混元大模型生成,僅供參考

為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

認真閱讀下面的文章,并思考文末互動提出的問題,嚴(yán)格按照互動:你的答案格式在評論區(qū)留言,就有機會獲得由電子工業(yè)出版社提供的優(yōu)質(zhì)科普書籍《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新。

就在昨天,2024年諾貝爾物理學(xué)獎頒給了人工神經(jīng)網(wǎng)絡(luò)和機器學(xué)習(xí),以表彰“利用人工神經(jīng)網(wǎng)絡(luò)進行機器學(xué)習(xí)的基礎(chǔ)發(fā)現(xiàn)和發(fā)明”。簡單來講,人工神經(jīng)網(wǎng)絡(luò)是計算機處理大量數(shù)據(jù)和分析復(fù)雜問題的“大腦”,通過節(jié)點(也就是“神經(jīng)元”)之間不同程度的關(guān)聯(lián)來實現(xiàn)程序的處理,隨著程序執(zhí)行,不同節(jié)點之間的關(guān)聯(lián)程度會隨著節(jié)點的活躍變強或變?nèi)?/strong>,從而獲得類似“學(xué)習(xí)”的過程,并合理地給出我們期望的結(jié)果。毫無疑問,人工智能(AI)在我們社會中的重要性正在逐步增長。現(xiàn)在,AI模型經(jīng)常被用來協(xié)助人們做出影響生活的重大決策,包括醫(yī)療診斷、財務(wù)決策、求職招聘等等。然而,盡管人工智能日益融入社會,我們?nèi)匀浑y以解釋人工智能系統(tǒng)為什么會做出這樣的決定。AI模型如何通過大腦掃描來判斷大腦是正常還是有一個腫瘤?為什么ChatGPT決定輸出這一段文字而不是另外一段?在創(chuàng)建有益的人工智能系統(tǒng)時,這些都是需要回答的重要問題。但在回答這些問題之前,首先要解決的一個挑戰(zhàn)是關(guān)于哲學(xué)的問題:我們應(yīng)該如何解釋AI系統(tǒng)的決策?解釋AI的決策又意味著什么?為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

哈娜喬克勒倫敦國王學(xué)院教授哈娜喬克勒(Hana Chockler)致力于結(jié)合哲學(xué)和計算機科學(xué)的知識,研究解釋人工智能系統(tǒng)決策的新方法。正如喬克勒在最近的一次活動上解釋的,她和她的團隊研發(fā)了一種名為ReX(Responsibility-based Explanations,基于因果的解釋)的工具,這個工具可以解釋為什么圖像標(biāo)注人工智能模型(稱為圖像分類器)會以它們使用的這種方式標(biāo)注圖像。她的研究成果可以直接應(yīng)用于醫(yī)學(xué)影像領(lǐng)域,讓醫(yī)生更好地理解人工智能系統(tǒng),甚至與人工智能系統(tǒng)互動,由人工智能系統(tǒng)判斷大腦掃描結(jié)果是否健康。重要的是,使用ReX無需了解人工智能系統(tǒng)的內(nèi)部運作,這使它成為一種通用工具,不僅可以應(yīng)用于當(dāng)前的人工智能系統(tǒng),還可以應(yīng)用于未來更復(fù)雜的人工智能系統(tǒng)。喬克勒的職業(yè)生涯始于計算機科學(xué)領(lǐng)域中的形式驗證。在這一領(lǐng)域,計算機科學(xué)家使用形式數(shù)學(xué)方法來確定程序是否真的做了我們想要它們做的事情。也就是說,即使驗證過程說程序是正確的,我們能確定程序真的做了我們想要做的所有事情嗎?“事后看來”,喬克勒說,“這本來就是關(guān)于解釋的問題:我們?nèi)绾谓忉尶隙ǖ拇鸢福咳绾谓忉寷]有錯誤出現(xiàn)?”在喬克勒攻讀博士學(xué)位期間,計算機科學(xué)家、哲學(xué)家約瑟夫哈爾彭(Joseph Halpern)的一次演講引起了她的注意。在哲學(xué)中,解釋結(jié)果的問題屬于因果關(guān)系的范疇。要解釋一個結(jié)果,我們必須首先知道導(dǎo)致這個結(jié)果的原因是什么。一旦我們了解了結(jié)果是如何造成的,我們就可以通過給出原因來解釋結(jié)果。當(dāng)時,哈爾彭正在開創(chuàng)一個新的哲學(xué)框架來定義因果關(guān)系,他稱之為實際因果關(guān)系。在聆聽哈爾彭的演講時,喬克勒意識到哈爾彭用他的框架解決的問題與她自己正在研究的問題非常相似。唯一不同的是,在她的研究中,需要解釋的結(jié)果是計算機程序的輸出。“這是一個幸運的巧合”,她說,“當(dāng)時我正在研究純粹的計算機科學(xué)問題,卻突然發(fā)現(xiàn)這些哲學(xué)概念實際上是有用的,這對我來說是一個很大的范式上的轉(zhuǎn)變。”喬克勒開始與哈爾彭合作,并與她的博士生導(dǎo)師奧爾娜庫普弗曼(Orna Kupferman)一起撰寫了一篇論文,展示了她在博士論文中使用的形式驗證方法怎么從實際因果關(guān)系的角度進行重構(gòu)。重要的是,他們還介紹了如何量化因果關(guān)系或賦予它一個數(shù)值,這對她今后的工作非常重要。這種量化的想法將為實際因果關(guān)系成為解釋大人工智能模型輸出結(jié)果的強大工具奠定基礎(chǔ)。不過,當(dāng)時并沒有人關(guān)注到這項工作。那是在2002年,人工智能當(dāng)時正處于一個不怎么被重視的時期。“沒有人明白我們在說什么”,喬克勒回憶道,“每個人都在想,為什么我們突然把哲學(xué)引進來了?這是什么鬼話?”她說,“當(dāng)然,現(xiàn)在看起來這件事情很滑稽,因為現(xiàn)在每個人都在討論因果關(guān)系。”什么是因果關(guān)系?為了理解哲學(xué)家是如何思考因果關(guān)系的,可以想象這樣一個場景,外面下著雨,而你正走在回家的路上。當(dāng)你到家時,從頭到腳都濕透了。那么雨水導(dǎo)致你全身濕透究竟是什么意思?為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

1739年,蘇格蘭哲學(xué)家大衛(wèi)休謨(David Hume)首次定義了因果關(guān)系,稱為反事實因果關(guān)系。根據(jù)反事實因果關(guān)系,休謨會說:下雨導(dǎo)致你淋雨,因為如果沒有下雨,你就不會淋雨。為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

這樣解釋存在的一個問題是,它沒有考慮到多個重疊原因的可能性。不妨考慮這樣一種情況:你走在回家的路上,外面下著雨。這時候,一輛汽車駛過一個水坑,濺了你一身水。當(dāng)你回到家時,身上又濕透了。在這種假設(shè)下,如果沒有下雨,你還是會被汽車打濕。同樣,如果汽車沒有駛過,你還是會被雨淋濕。因此,雨和車都不是你被淋濕的反事實原因。但可以肯定的是,它們確實是你被淋濕的原因為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

實際因果關(guān)系實際因果關(guān)系通過拓寬因果關(guān)系的概念來解決這個問題。在實際因果關(guān)系下,我們可以想象一個假想世界,它在各方面都與現(xiàn)在這個世界一樣,只是沒有汽車,在這個世界里,雨是你被淋濕的反事實原因,又因為我們可以想象這樣一個世界,所以我們說雨可以是你被淋濕的實際原因;同樣,我們還可以想象另一個假想世界,這個世界除了沒有下雨,其他方面都是一樣的,在這個世界里,汽車濺到你身上是你被淋濕的反事實原因。因此,在原來的世界里,汽車濺到你身上也是你被淋濕的一個實際原因。為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

實際因果關(guān)系的一大優(yōu)勢在于,它可以量化原因的重要性。在第一個沒有汽車的世界里,雨完全是你被淋濕的原因。在第二個世界中,我們只需要改變可能世界中的一件事(移走汽車),雨就會成為你被淋濕的反事實原因。在這種情況下,雨對你被淋濕有1/2的責(zé)任。我們可以想象這樣一個世界:10輛汽車駛過,都把你從頭到腳濺濕了。在這種不幸的情況下,我們需要改變可能世界中的10件事情,雨才能成為反事實原因。因此,我們可以說,雨對你被淋濕負有1/(10+1) = 1/11的責(zé)任。一般來說,如果我們需要改變可能世界中的n件事情才能使一個事件成為反事實原因,我們就說這個事件對結(jié)果的責(zé)任是 1/(1+n)。實際因果關(guān)系允許我們?yōu)椴煌脑蚍峙洳煌潭鹊?strong>責(zé)任,從而使我們能夠?qū)⒆⒁饬性?strong>最重要的原因上。這對于軟件工程或人工智能模型等大型系統(tǒng)來說非常重要,因為在這些系統(tǒng)中可能存在許許多多的“原因”。分析人工智能系統(tǒng)計算機科學(xué)家測試人工智能的主要工具之一是圖像分類問。給定一幅圖像,人工智能系統(tǒng)如何分辨其內(nèi)容?假設(shè)人工智能認為圖像是一只孔雀,它為什么會做出這樣的判斷呢?人類可能會解釋說,這是一只孔雀,因為它的尾巴上有藍色和綠色的花紋。喬克勒和她的同事開發(fā)的ReX工具,從人工智能模型中獲得類似的因果解釋。對于人工智能模型來說,因果解釋是指原始圖片的任何部分,其大小都剛好足以識別原始圖片的內(nèi)容。在孔雀圖片的例子中,人工智能可能會解釋說,它之所以判定圖片是孔雀,是因為根據(jù)組成尾巴的像素足以做出這樣的判定,但任何更小的像素子集都會導(dǎo)致結(jié)果是不確定的。為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

孔雀的圖像,以及為何將該圖像歸類為孔雀的因果解釋。ReX通過向人工智能模型提供許多與原始圖像略有不同的圖,從而從人工智能模型中獲得這種因果解釋。通過觀察人工智能如何對每張略有改動的圖像進行分類,ReX可以很好地估計原始圖像的每個像素對人工智能整體決策的影響程度。用實際因果關(guān)系的語言來說,它考慮了附近許多不同的假想世界,以估計每個原始像素的權(quán)重。在對每個像素點進行估算后,它就會選擇足夠多的權(quán)重最大的像素點,從而將整個圖像歸類為孔雀圖像。為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

熱圖顯示將圖片識別為孔雀的最重要的像素點。由于實際因果關(guān)系是一個適用于任何因果系統(tǒng)的通用哲學(xué)框架,因此ReX的工作無需了解人工智能系統(tǒng)的內(nèi)部運作。無論人工智能系統(tǒng)的內(nèi)部結(jié)構(gòu)如何,只要我們能給它輸入信息并讀取相應(yīng)的輸出結(jié)果,ReX就能讓我們從人工智能中獲得解釋。正因為如此,它可以應(yīng)用于我們無法直接理解的過于龐大或復(fù)雜的人工智能系統(tǒng)為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

核磁共振掃描顯示存在腦腫瘤ReX的一個直接用途是醫(yī)療成像領(lǐng)域。當(dāng)一名疑似腦腫瘤患者接受核磁共振檢查時,人工智能系統(tǒng)會自動通過掃描結(jié)果判斷是否含有腫瘤。如果AI認為掃描結(jié)果中有腫瘤,就會立即轉(zhuǎn)給醫(yī)生。如果不是,掃描結(jié)果仍會發(fā)送給醫(yī)生,但可能要過幾天才能送到醫(yī)生手中。有了ReX,人工智能系統(tǒng)可以響應(yīng):"腫瘤在這里!"這有助于醫(yī)生更快地進行診斷。ReX還能解釋圖像中沒有腫瘤的原因。由于腫瘤顯示的顏色往往與健康組織不同,ReX可以生成一個由健康組織顏色像素組成的網(wǎng)格,然后說:“我知道這些組織都是健康的,在這些健康組織之間沒有腫瘤。因此,在這次腦部掃描中不可能有腫瘤。如果醫(yī)生不同意,他們可以告訴人工智能更仔細地檢查可疑區(qū)域,從而支持醫(yī)生和人工智能系統(tǒng)之間的對話。”展望未來雖然她的工作橫跨哲學(xué)與計算機科學(xué),但喬克勒堅持認為,她骨子里是一個務(wù)實的人。她說:“我對那些我們可以構(gòu)建、可以驗證、可以證明的東西感興趣。”她的團隊的下一個重要目標(biāo)是將他們的技術(shù)應(yīng)用于大型語言模型,如ChatGPT。對于像ChatGPT這樣的語言模型,存在著圖像分類器所不具備的挑戰(zhàn):語言在很大程度上依賴于上下文。在一張貓的圖片中,你可以遮住背景,但圖片仍然是一只貓,這樣你就可以從圖片中找到小的子集來代表整個圖片。然而,在一個句子或一個段落中,遮住一個 "不 "字可能會完全顛倒整個文本的意思。正因為如此,最小因果解釋的概念很難直接套用。喬克勒說:“我們還沒有做到這一點,但我們這個團隊已經(jīng)有了很多人,我們對接下來的工作感到非常興奮。”

作者:Justin Chen

翻譯:小聰

審校:7號機

fu

li

shi

jian

今天我們將送出由電子工業(yè)出版社提供的《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新。

為了獲諾獎,AI不僅要懂物理學(xué),還要懂哲學(xué)?

人工智能驅(qū)動科學(xué)創(chuàng)新(AI for Science)帶來的產(chǎn)業(yè)變革與每個人息息相關(guān)。本書聚焦于人工智能與材料科學(xué)、生命科學(xué)、電子科學(xué)、能源科學(xué)、環(huán)境科學(xué)五大領(lǐng)域的交叉融合,通過深入淺出的語言,對基本概念、技術(shù)原理和應(yīng)用場景進行了全面的介紹,讓讀者可以快速掌握AI for Science的基礎(chǔ)知識。此外,對于每個交叉領(lǐng)域,本書通過案例進行了詳盡的介紹,梳理了產(chǎn)業(yè)地圖,并給出了相關(guān)政策啟示。

《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》適合所有關(guān)注人工智能技術(shù)和產(chǎn)業(yè)發(fā)展的讀者閱讀,特別適合材料科學(xué)、生命科學(xué)、電子科學(xué)、能源科學(xué)、環(huán)境科學(xué)等領(lǐng)域的政府工作人員、科研人員、創(chuàng)業(yè)者、投資者等參考。

互動問題:你還知道人工智能與哪些學(xué)科有交叉?有什么應(yīng)用或研究進展呢?

請大家嚴(yán)格按照互動:問題答案的格式在評論區(qū)留言參與互動,格式不符合要求者無效。

截止到本周五中午12:00,參與互動的留言中點贊數(shù)排名第二、三、五的朋友將獲得我們送出的圖書一套(點贊數(shù)相同的留言記為并列,下一名次序加一,如并列第二之后的讀者記為第三名,以此類推)。

為了保證更多的朋友能夠參與獲獎,過往四期內(nèi)獲過獎的朋友不能再獲得獎品,名次會依次順延

*本活動僅限于微信平臺

編輯:7號機

翻譯內(nèi)容僅代表作者觀點

不代表中科院物理所立場


贊助本站

相關(guān)內(nèi)容
AiLab云推薦
推薦內(nèi)容
展開

熱門欄目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能實驗室 版權(quán)所有    關(guān)于我們 | 聯(lián)系我們 | 廣告服務(wù) | 公司動態(tài) | 免責(zé)聲明 | 隱私條款 | 工作機會 | 展會港